Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons.

نویسندگان

  • Ying Wang
  • Giulia D'Urso
  • Laura Bianchi
چکیده

Degenerin/epithelial Na(+) channels (DEG/ENaCs) are voltage-independent Na(+) or Na(+)/Ca(2+) channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na(+) transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We recently reported the characterization of a novel DEG/ENaC in Caenorhabditis elegans that we named ACD-1. ACD-1 is expressed in glial amphid sheath cells. The glial ACD-1, together with the neuronal DEG/ENaC DEG-1, is necessary for acid avoidance and attraction to lysine. We report presently that knockout of acd-1 in glia exacerbates sensory deficits caused by another mutant: the hypomorphic allele of the cGMP-gated channel subunit tax-2. Furthermore, sensory deficits caused by mutations in G(i) protein odr-3 and guanylate cyclase daf-11, which regulate the activity of TAX-2/TAX-4 channels, are worsened by knockout of acd-1. We also show that sensory neurons of acd-1 tax-2(p694) double mutants fail to undergo changes in intracellular Ca(2+) when animals are exposed to low concentrations of attractant. Finally, we show that exogenous expression of TRPV1 in sensory neurons and exposure to capsaicin rescue sensory deficits of acd-1 tax-2(p694) mutants, suggesting that sensory deficits of these mutants are bypassed by increasing neuronal excitability. Our data suggest a role of glial DEG/ENaC channel ACD-1 in supporting neuronal activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knock - out of glial channel ACD - 1 exacerbates sensory deficits in a C . elegans mutant by 1 regulating calcium levels of sensory neurons

26 DEG/ENaC channels are voltage-independent Na or Na/Ca channels expressed in many 27 tissues and needed for a wide range of physiological functions, including sensory perception 28 and transepithelial Na transport. In the nervous system DEG/ENaCs are expressed both in 29 neurons and glia. However, the role of glial versus neuronal DEG/ENaCs remains unclear. We 30 recently reported the charact...

متن کامل

A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans.

Mammalian neuronal DEG/ENaC channels known as ASICs (acid-sensing ion channels) mediate sensory perception and memory formation. ASICS are closed at rest and are gated by protons. Members of the DEG/ENaC family expressed in epithelial tissues are called ENaCs and mediate Na(+) transport across epithelia. ENaCs exhibit constitutive activity and strict Na(+) selectivity. We report here the analys...

متن کامل

Role of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat

Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...

متن کامل

Sodium channels and mammalian sensory mechanotransduction

BACKGROUND Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. β and γENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epitheli...

متن کامل

Negative Regulation and Gain Control of Sensory Neurons by the C. elegans Calcineurin TAX-6

Animals sense and adapt to variable environments by regulating appropriate sensory signal transduction pathways. Here, we show that calcineurin plays a key role in regulating the gain of sensory neuron responsiveness across multiple modalities. C. elegans animals bearing a loss-of-function mutation in TAX-6, a calcineurin A subunit, exhibit pleiotropic abnormalities, including many aberrant sen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 107 1  شماره 

صفحات  -

تاریخ انتشار 2012